Enrollment No: _____ Exam Seat No:____

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Engineering Mathematics - IV

Subject Code: 4TE04EMT1 Branch: B.Tech (Auto,Civil,EE,EC,Mech)

Semester: 4 Date: 20/10/2018 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) δ equal to
 - (A) $\frac{\Delta}{E^{\frac{1}{2}}}$ (B) $E^{\frac{1}{2}} + E^{\frac{-1}{2}}$ (C) $E^{\frac{1}{2}} E^{\frac{-1}{2}}$ (D) none of these
- **b**) $\Delta \nabla$ equal to
 - (A) $\nabla + \Delta$ (B) $\nabla \Delta$ (C) $\nabla \Delta$ (D) none of these
- c) Putting n = 1 in the Newton Cote's quadrature formula following rule is obtained
 - (A) Simpson's rule (B) Trapezoidal rule (C) Simpson's $\frac{3}{8}$ rule
 - (D) none of these
- d) In application of Simpson's $\frac{1}{3}$ rule, the interval of integration for closer

approximation should be

- (A) odd and small (B) even and small (C) even and large (D) none of these
- **e**) The Gauss elimination method in which the set of equations are transformed into triangular form.
 - (A) TRUE (B) FALSE
- f) Jacobi iteration method can be used to solve a system of non linear equations.
 (A) TRUE (B) FALSE
- g) The auxiliary quantity k_1 obtained by Runge Kutta fourth order for the differential equation $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1, when h = 0.1 is
 - (A) 0.1 (B) 0 (C) 1 (D) none of these
- The first approximation y_1 of the initial value problem $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0 obtain by Picard's method is

(A)
$$x^2$$
 (B) $\frac{x^2}{2}$ (C) $\frac{x^3}{3}$ (D) none of these

i) The Fourier cosine transform of $f(x) = 5e^{-2x}$ is

(A)
$$\sqrt{\frac{2}{\pi}} \left(\frac{10}{\lambda^2 + 4} \right)$$
 (B) $\sqrt{\frac{2}{\pi}} \left(\frac{2}{\lambda^2 + 4} \right)$ (C) $\sqrt{\frac{2}{\pi}} \left(\frac{10}{\lambda^2 - 4} \right)$ (D) none of these

The Fourier sine transform of $f(x) = \begin{cases} 1, & 0 < x < a \\ 0, & x > a \end{cases}$ is

(A)
$$\sqrt{\frac{2}{\pi}} \left(\frac{1 + \cos a\lambda}{\lambda} \right)$$
 (B) $\sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos a\lambda}{\lambda^2} \right)$ (C) $\sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos a\lambda}{\lambda} \right)$

(D) none of these

k) The function $2x-x^2+py^2$ is harmonic if p equal to (A) 0 (B) 1 (C) 2 (D) 3

Under the transformation $w = \frac{1}{z}$ the image of |z - 2i| = 2 is

(A)
$$v = \frac{1}{4}$$
 (B) $v = \frac{-1}{4}$ (C) $|w - 2i| = 2$ (D) $u^2 + v^2 = 4$

m) The tangent vector at the point t = 1 on the curve $x = t^2 + 1$, y = 4t - 3, $z = t^3$ is (A) 2i - 4j + 3k (B) 2i + 4j + 3k (C) 2i - 4j - 3k (D) 2i + 4j - 3k

n) If
$$\vec{V} = (3xyz)i - (2x^2y)j + (2z)k$$
 then $|\text{div } \vec{V}|$ at (1,1,1) is (A) 0 (B) 3 (C) 1 (D) 2

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)

a) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$, find $\sin 52^{\circ}$, using Newton's forward interpolation formula. (5)

b) Given (5)

x:	10	20	30	40	50
y:	600	512	439	346	243

Using Stirling's formula find y_{35} .

c) Find the finite Fourier sine transform of $f(x) = lx - x^2$, $0 \le x \le l$. (4)

Q-3 Attempt all questions

(14)

a) Solve the following system of equations by Gauss-Seidal method. (5) 27x+6y-z=85, 6x+5y+2z=72, x+y+54z=110

b) Given that (5)

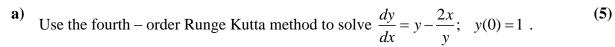
х	1.00	1.05	1.10	1.15	1.20	1.25	1.30
у	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

Find $\frac{dy}{dx}$ at x = 1.05.

c) Determine the analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$. (4)

Q-4 Attempt all questions

(14)



Evaluate the value of y when x = 0.2 and 0.4

b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 by Simpson's 3/8 Rule using $h = \frac{1}{6}$. (5)

c) Solve the following system of equations by Gauss-Jordan Method:
$$5x-2y+3z=18$$
, $x+7y-3z=-22$, $2x-y+6z=22$

Q-5 Attempt all questions

(14)

a) If
$$f(z) = f(re^{i\theta}) = P(r,\theta) + iQ(r,\theta)$$
 is an analytic function, prove that both P and Q satisfy the Laplace equation in polar coordinates, namely

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0.$$

b) If
$$\phi = 45x^2y$$
, then evaluate $\iiint_V \phi \, dV$, where V denote the closed region bounded (5)

by the planes 4x + 2y + z = 8, x = 0, y = 0, z = 0.

c) Use Lagrange's Interpolation Formula to find the value of y when x = 3.5, if the following values of x and y are given:

X	1	2	3	4
у	1	8	27	64

Q-6 Attempt all questions

(14)

a) If
$$\vec{F} = (z^2 + 2x + 3y)\hat{i} + (3x + 2y + z)\hat{j} + (y + 2xz)\hat{k}$$
, show that \vec{F} is irrotational but not solenoidal. (5)

b) Under the transformation
$$w = \frac{1}{z}$$
 (5)

- (a) Find the image of |z-2i|=2
- (b) Show that the image of the hyperbola $x^2 y^2 = 1$ is the lemniscates $\rho^2 = \cos 2\theta$.
- c) Using Taylor's series method, compute y(-0.1), y(0.1), y(0.2) correct to four decimal places, given that $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1

Q-7 Attempt all questions

(14) (5)

- a) Show that the function defined by the equation
 - f(z) = $\begin{cases} u(x, y) + iv(x, y), & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$

where $u(x, y) = \frac{x^3 - y^3}{x^2 + y^2}$ and $v(x, y) = \frac{x^3 + y^3}{x^2 + y^2}$ is not analytic at z = 0 although

Cauchy – Riemann equations are satisfied at that point.

b) Using Green's Theorem, evaluate $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the (5)

boundary of the region bounded by $y^2 = x$ and $y = x^2$.

c) Evaluate $\int_{0}^{1} x^{3} dx$ by Trapezoidal Rule using 5 subintervals. (4)

- Given $\frac{dy}{dx} = xy$ with y(1) = 5. Using Euler's method find the solution correct to three decimal position in the interval [1,1.5] taking step size h = 0.1.
- **b)** Using Fourier integral show that $\int_{0}^{\infty} \frac{1 \cos \pi \lambda}{\lambda} \sin x\lambda \ d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$ (5)
- c) Prove that the angle between the surface $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (2, -1, 2) is $\cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$.

